真核生物基因表达的dna水平调控包括什么方式?
1、转录起始水平。
这一环节是调控的最主要环节,由对基因转录活性的调控来完成,包括基因的空间结构、折叠状态、DNA上的调控序列、与调控因子的相互作用等。a.活化染色质:在真核生物体内,RNApol与启动子的结合受染色质结构的限制,需通过染色质重塑来活化转录。常态下,组蛋白可使DNA链形成核小体结构而抑制其转录,转录因子若与转录区结合则基因具有转录活性。因而基础水平的转录是限制性的,核小体的解散时必要前提,组蛋白与转录因子之间的竞争结果可以决定是否转录。组蛋白的抑制能力可因其乙酰化而降低。另外,由于端粒位置效应或中心粒的缘故,抑或是收到一些蛋白的调控,真核生物细胞可能出现10%的异染色质,异染色质空间上压缩紧密,不利于转录。b.活化基因:真核生物编码蛋白的基因含启动子元件和增强子元件(启动子:在DNA分子中,RNA聚合酶能够识别、结合并导致转录起始的序列。增强子:指能使与它连锁的基因转录频率明显增加的DNA序列。),转录因子与启动子元件相互作用调节基因表达;转录激活因子与增强子元件相互作用,再通过与结合在启动子元件上的转录因子相互作用来激活转录。两种元件以相同的机制作用于转录。真核生物RNApol对启动子亲和力很小或没有,转录起始依赖于多个转变路激活因子的作用,而若干个调节蛋白与特定DNA序列的结合大大提高了活化的精确度,无疑是这一作用机制的一大优势。在这一作用中,增强子与适当的调节蛋白作用以增加临近启动子的转录是没有方向性的,典型的增强子可以出现在转录起始位点上游或下游。RNApol与启动子的结合一般需要三种蛋白质的作用,即基础转录因子(又名通用转录因子)、转录激活因子和辅激活因子。能直接或间接地识别或结合在各类顺式作用元件上,参与调控靶基因转录的蛋白质又名转录因子。基础转录因子与RNApol结合成全酶复合物并结合到启动子上,转录激活因子可以以二聚体或多聚体的形式结合到DNA靶位点上,远距离或近距离作用域启动子。在远距离作用时,往往还会有绝缘子参与,以阻断邻近的增强子对非想关基因的激活;在近距离作用时,结构转录因子可以改变DNA调控区的形状,使其他蛋白质相互作用、激活转录。2、转录后水平。真核生物mRNA前体须经过5’-加帽、3’-加尾以及拼接过程、内部碱基修饰才能成为成熟度的mRNA,加帽位点与加尾位点、拼接点的选择就成了调控的手段。a.5’-加帽:几乎所有的真核生物和病毒mRNA的5’端都具有帽子结构,其作用为保护mRNA免遭5’外切酶降解、为mRNA的核输出提供转运信号和提高翻译模板的稳定性和翻译效率。实验证实,对于通过滑动搜索起始的转录过程来说,mRNA的翻译活性依赖于5’端的帽子结构。b.3’-加尾:3’UTR序列及结构调节mRNA稳定性和寿命
使基因表达的调控元件是?
基因表达是一个多阶段进程(multi-level process)。DNA(脱氧核糖核酸)在转录为RNA(核糖核酸)后,RNA需要经过一系列转录后调控。
转录后基因调控包括多种生物学进程,如RNA剪接,polyA加尾(RNA多聚腺苷酸加尾),RNA降解及mRNA翻译等等。尽管这些不同进程的具体作用分子机制各有不同,但总体而言,它们的调控都是由位于RNA上的顺式调控元件(cis-regulatory elements)和以RNA结合蛋白为代表的反式因子(trans-regulatory elements)相互作用完成,所以全局研究转录后基因调控网络首先需要全面解析顺式调控元件或反式因子。
通常,真核细胞基因由编码蛋白质的编码区和具有调控作用的非编码区组成。其中,编码区由外显子和内含子间隔排列,而非编码区,又称“侧翼序列”,特指第一个外显子和最末一个外显子的外侧区域,包含有启动子、终止子、上游启动子元件、增强子、沉默子、反式作用因子等元件。
顺式作用元件(cis-acting element),或称顺式元件子,是存在于基因旁侧序列中能影响基因表达的序列。顺式作用元件包括启动子、增强子、沉默子 等,它们的作用是参与基因表达的调控。顺式作用元件?身不编码蛋白质,其作用是提供一个结合位点,反式作用因子通过结合在该位点上来改变结合处的特性,进而调控受此顺式作用元件影响的基因。调控方式包括对基因转录可变剪切的调控、转录起始位点的调控以及转录效率的调控。
反式作用因子(trans-acting factor)则是指通过直接结合或间接作用于DNA、RNA等核酸分子,对基因表达发挥不同调节作用(激活或抑制)的各类蛋白质,其?身对基因表达没有调控作用,只是阻断来自上、下游的调控效应。反式作用因子主要指能结合在基因序列上的特异性蛋白质──转录因子,然而随着表观遗传学的发展,研究发现除了蛋白,某些DNA,RNA片断也具有类似的调控功能,因此现在把它们算作反式作用因子。 (不仅仅是转录因子)。
说明原核生物基因表达调控的特点
核生物的基因包括编码区和非编码区,它的编码区是连续的,没有内含子和外显子,所以转录形成的RNA不用加工,长度和编码区相等。
1、基因的结构;
2、转录后MRNA的长度;
3、翻译的场所在细胞质;
4、且是边转录边翻译;
5、转录和翻译都在细胞质中。
什么是基因表达调控
从DNA到蛋白质的过程叫基因表达,对这个过程的调节即为基因表达调控。基因表达调控的指挥系统有很多种,不同生物使用不同的信号来指挥基因调控。一条成熟的mRNA链只能翻译出一条多肽链;真核细胞DNA与组蛋白及大量非组蛋白相结合,只有小部分DNA是裸露的;而且高等真核细胞内DNA中很大部分是不转录的;真核生物能够有序的根据生长发育阶段的需要进行DNA片段重排,并能根据需要增加细胞内某些基因的拷贝数等。
基因表达调控的层次及意义
基因表达调控是生物体内基因表达的调节控制,使细胞中基因表达的过程在时间、空间上处于有序状态,并对环境条件的变化作出反应的复杂过程。基因表达的调控可在多个层次上进行,包括基因水平、转录水平、转录后水平、翻译水平和翻译后水平的调控。
基因表达调控的指挥系统有很多种,不同生物使用不同的信号来指挥基因调控。原核生物和真核生物之间存在着相当大差异。原核生物中,营养状况、环境因素对基因表达起着十分重要的作用;而真核生物尤其是高等真核生物中,激素水平、发育阶段等是基因表达调控的主要手段,营养和环境因素的影响则为次要因素。
基因表达调控是生物体内细胞分化、形态发生和个体发育的分子基础。
基因表达调控的方式有哪些
基因表达调控的方式:
1、DNA、染色体水平调控:基因丢失、基因修饰、基因重排、基因扩增、染色体结构变化;
2、转录水平调控:转录起始、延伸、终止均有影响。原核生物借助于操纵子,真核生物通过顺式作用元件和反式作用因子相互作用进行调控;
3、转录后水平调控:主要指真核生物原初转录产物经过加工成为成熟的mRNA,包括加帽、加尾、甲基化修饰等;
4、翻译水平调控:对mRNA稳定性的调控、反义RNA对翻译水平的调控等;
5、翻译后水平调控:蛋白质的剪切、化学修饰、转运等;
6、mRNA降解的调控。
基因表达调控定义是什么
从DNA到蛋白质的过程叫基因表达,对这个过程的调节即为基因表达调控。基因表达调控的指挥系统有很多种,不同生物使用不同的信号来指挥基因调控。一条成熟的mRNA链只能翻译出一条多肽链;真核细胞DNA与组蛋白及大量非组蛋白相结合,只有小部分DNA是裸露的;而且高等真核细胞内DNA中很大部分是不转录的;真核生物能够有序的根据生长发育阶段的需要进行DNA片段重排,并能根据需要增加细胞内某些基因的拷贝数等。